学术讲座

首页 / 学术讲座 / 正文

Gaussian approximation for the kth coordinate of sums of random vectors

发布日期:2025-08-31 浏览量:

报告时间 2025年9月2日上午8:00
报告地点 北湖东校区数学与统计学院新楼216室
主办单位 数学与统计学院/科研处
主 讲 人 李启寨

   李启寨,中国科学院数学与系统科学研究院 研究员,系统科学研究所副所长;2001年本科毕业于中国科学技术大学,2006年博士毕业于中国科学院数学与系统科学研究院,2006-2009年在美国国立卫生健康研究院国家癌症研究所从事博士后研究, 2016年当选国际统计学会推选会员(ISI Elected Member), 2020年当选美国统计学会会士(ASA Fellow)。研究方向:生物医学统计、遗传统计、复杂数据推断等;在Nature Genetics, Science Advances, Angewandte Chemie-International Edition, Cancer Research, AJHG, Bioinformatics,IEEE TPAMI, Psychometrika, JASA, JRSSB, Biometrics等期刊发表SCI论文130余篇;现任中国数学会常务理事、中国现场统计研究会常务理事等。

   报告摘要:We consider the problem of Gaussian approximation for the κth coordinate of a sum of high-dimensional random vectors. Such a problem has been studied previously for κ = 1 (i.e., maxima). However, in many applications, a general κ ≥ 1 is of great interest, which is addressed in this paper. We make four contributions: 1) we first show that the distribution of the κth coordinate of a sum of random vectors,  can be approximated by that of Gaussian random vectors and derive their Kolmogorovs distributional difference bound; 2) we provide the theoretical justification for estimating the distribution of the κth coordinate of a sum of random vectors using a Gaussian multiplier procedure, which multiplies the original vectors with i.i.d. standard Gaussian random variables; 3) we extend the Gaussian approximation result and Gaussian multiplier bootstrap procedure to a more general case where κ diverges; 4) we further consider the Gaussian approximation for a square sum of the first d largest coordinates. All these results allow the dimension p of random vectors to be as large as or much larger than the sample size n.